Beuth Hochschule für Technik Berlin Studiengang Elektrotechnik Schwerpunkt Kommunikationstechnik

Prof. Dr.-Ing. Matthias Seimetz

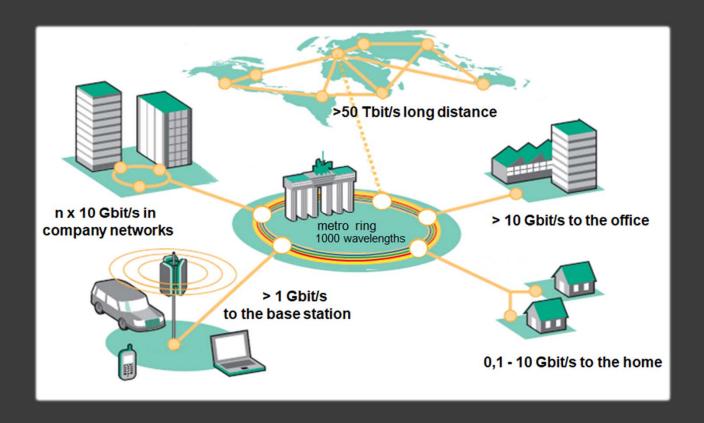
Kommunikationstechnik studieren

...heißes Thema, aktuelle spannende Anwendungsgebiete

...zukunftssicheres Studium

...interessante Inhalte, gute Struktur und Studierbarkeit

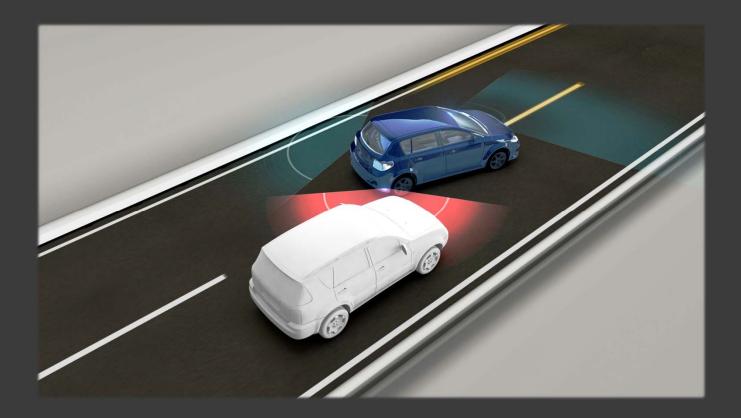
...konsekutiver Masterstudiengang M-IC


...praxisnahe Ausbildung in modernen Laboren

Unsere Gesellschaft im Zeitalter der Digitalisierung aktiv mit gestalten!

Digitalisierung und Vernetzung

Breitbandausbau mittels Glasfaser


Faszination Glasfaserübertragung – Riesige Datenraten, hohe Reichweiten

Neue Mobilfunksysteme – Connecting everything!

GSM - GPRS - EDGE - UMTS - HSPA - LTE - LTE Adv. - 5G

Internet der Dinge, z. B. Vernetzung von Fahrzeugen (Car2X)

Fahrzeugassistenzsysteme – Autonomes Fahren – Infotainment

Entwicklung neuer Medientechnologien

Neue Audio-/Videosysteme – Konzepte zur Mensch-Maschine-Interaktion – Rundfunk und Fernsehen

und viele mehr, beispielsweise in der...

... Vernetzung von Maschinen (Industrie 4.0)

...Hausautomatisierung (Smart Home)

...Vernetzung intelligenter Stromnetze (Smart Grids)

...Medizintechnik

...Komponentenentwicklung

Arbeitsgebiete und Partner

Wo finden Sie nach Ihrem KT-Studium Ihren Arbeitsplatz?

...private und öffentliche Netzbetreiber – Netzoptimierung und Netzweiterentwickung

...große, mittelständische und kleine Industrieunternehmen – Software-, Hardware und Systementwicklung, Vertrieb

...Forschungsinstitute – Entwicklung von Kommunikationssytemen der nächsten Generation

Studieninhalte – Überblick

Kommunikationstechnik – Studienablaufplan ab 4. Semester:

Hoch- frequenztechnik (4+1)	Mess- und Regelungstechnik (3+1)	Digitale Nachrichtenübertragung (6+2)		Digitale Signalverarbeitung (6+2)		4
Komponenten der KommTechnik (3+1)	Rechner- und Datennetze (3+2)	Drahtlose KommTechnik (2+2)	Optische KommTechnik (3+1)	Audiotechnik (3+1)	Videotechnik (2+2)	5
Entwurf digitaler Systeme (1+2)	Business Administration (4+0)	WPF 1 (0+4)	WPF 2 (0+4)	WPF 3 (0+4)	WPF 4 (0+4)	6
Praxisphase			Bachelorarbeit			7

- 4. Semester: Nachrichtentechnische Basisausbildung
- 5. Semester: Anwendungsorientierte Basisausbildung
- 6. Semester: Individuelle Vertiefung über 4 Wahlpflichtfächer
 - 7. Semester: Praxisphase und Bachelorarbeit

Nachrichtentechnische Basisausbildung im 4. Semester:

Hochfrequenztechnik:

HF-Basiswissen und typische HF-Messplätze, Umgang mit Netzwerkanalysator

Mess- und Regelungstechnik:

Basiswissen zur Regelung, Kennenlernen später verwendeter Messgeräte, LabView

Digitale Nachrichtenübertragung:

Nachrichtentechnisches Basiswissen in Theorie, Simulation und Experiment

Digitale Signalverarbeitung:

Basiswissen zur DSV (z. B. Signalanalyse und –filterung), DSP-Programmierung

Anwendungsorientierte Basisausbildung im 5. Semester:

Basisausbildung in zwei Teilgebieten der Kommunikationstechnik:

Kommunikationssysteme und –netze:

Drahtlose Kommunikation
Optische Kommunikation
Internet und Netzwerktechnik

Audio- und Videotechnik

Standards im Audio-/Videobereich Mikrofone, Lautsprecher, Raumakustik Fernsehübertragung

Basisausbildung Bereich Kommunikationssysteme- und netze:

Drahtlose Kommunikationstechnik:

Übertragungsverfahren im Funk (z.B. OFDM, Mehrantennensysteme), Eigenschaften Funkkanal

Optische Kommunikationstechnik:

Signalübertragung über Glasfaser, Komponenten + Subsysteme bei optischer Kommunikation

Rechner- und Datennetze:

Aufbau von Rechner- und Datennetzen, Übertragungsprotokolle, prakt. Netzwerkkonfiguration

Basisausbildung Bereich Audio- und Videotechnik:

Audiotechnik:

Schallwellen/Schallwahrnehmung, Mikrofone/Lautsprecher, Stecker/Formate, Raumakustik

Videotechnik:

Komponenten und Standards im Bild-/Videobereich, Videocodierung, Fernsehübertragung

Individuelle Vertiefung im 6. Semester über 4 Wahlpflichtfächer

...5 WPF im Bereich Kommunikationssysteme und –netze wählbar

...5 WPF im Bereich Audio- und Videotechnik wählbar

...oder auch beide Bereiche gemischt weiterstudieren

...oder WPF aus anderen Studiengängen wählen

Ergänzende Pflichtmodule im 6. Semester

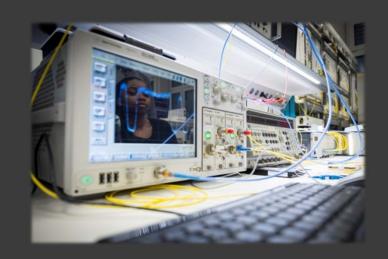
Entwicklung digitaler Systeme:

Design/Test komplexerer digitaler Systeme (FPGAs, ASICs), VHDL-/Verilog-Programmierung

Business Administration:

Grundlagen der Betriebswirtschaftslehre, Englisch für Kommunikationstechniker

Im 6. Semester: Großer Wahlpflichtbereich


Mobilfunknetze

Grundlagen zellularer Funknetze, Architektur und Signalübertragung bei GSM/UMTS/LTE/5G, Laborprojekte zu weiteren Funksystemen und Software Defined Radio

Optische Kommunikationssysteme und –netze

Funktionsweise optischer Glasfasernetze im Zugangs-, Weitverkehrs- und transozeanischen Bereich sowie optische Freistrahlübertragung

Im 6. Semester: Großer Wahlpflichtbereich

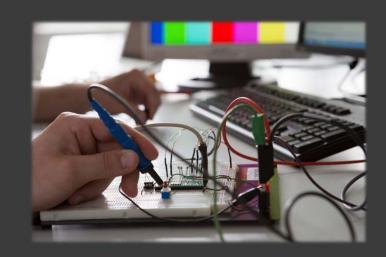
Netzwerkprogrammierung

Durchführung eines selbstgewählten Programmierprojektes zur Netzwerkkommunikation, Vertiefung der Kenntnisse z. B. in den Bereichen TCP/IP und Socket-Programmierung (in C und Python)

Embedded Systems

Betrachtung von Computern, die in Systeme eingebaut ("embedded") sind, Projekte z.B. mit dem Raspberry pi zur Umsetzung verschiedener Anwendungen innerhalb der Kommunikationstechnik

Im 6. Semester: Großer Wahlpflichtbereich


Digitale Audiosignalverarbeitung

A/D- und D/A-Umsetzung von Audiosignalen, Dynamik- und Klangbeeinflussung (z. B. Verhallung), Simulations-/Echtzeitumsetzung ausgewählter Verfahren

Digitale Bildverarbeitung

Erweiterung bereits bekannter Verfahren der DSV auf zweidimensionale Signale, Betrachtung von Einzelbildern und Bildfolgen (Videos), ausgewählte Projekte (z.B. Gestensteuerung, Fahrspurerkennung)

7. Semester: Praxisphase und Bachelorarbeit

...12-wöchiges Praktikum und 3-monatige Bachelorarbeit

....idealerweise im selben Unternehmen

...nahtloser Übergang in die berufliche Praxis

...Bachelorarbeit auch an der Hochschule möglich

...Unterstützung bei der Firmen-/Themensuche durch die Professoren

Beauftragter für die Praxisphase:

Prof. Dr.-Ing. Michael Rohde rohde@beuth-hochschule.de

Konsekutiver Masterstudiengang

Ideal passender konsekutiver Masterstudiengang M-IC

...M-IC = Master Information and Communications Engineering

...ermöglicht Vertiefung der Inhalte der Kommunikationstechnik

...passt inhaltlich optimal

...wird in englischer Sprache durchgeführt

Advanced Signal	Advanced Signal	Stochastic	Master	Required-Elective	Required-Elective	1
Transm. Technol.	Proc. Methods	Modeling & Opt.	Colloquium A	Module I	Module II	
(2+1)	(2+1)	(4+0)	(0+1)	(0+4)	(0+4)	
Network	Software	General	Master	Required-Elective	Required-Elective	2
Engineering	Engineering	Studies	Colloquium B	Module III	Module IV	
(3+0)	(3+1)	(2+2)	(0+1)	(0+4)	(0+4)	
Master's Thesis						

Konsekutiver Masterstudiengang

Wahlpflichtmodule des M-IC

Digital Radio Systems

Photonic Communication Systems

Network Security and Cryptography

Advanced Switching and Routing

Distributed Systems and Services

Model-Based Digital Communication Systems Design

Multimedia Broadcast Systems

Machine Learning

Labore – Übersicht

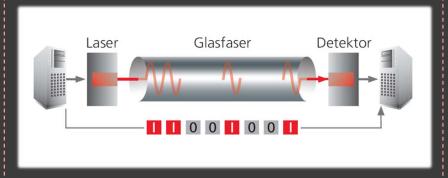
Labore im Bereich Kommunikationstechnik

...alle Module enthalten praktische Übungen (Einzelversuche und Projektaufgaben)

...Durchführung v.a. im TKT-Labor und DSV-Labor (beide frisch modernisiert)

Labor für Telekommunikationstechnik ("TKT-Labor")

Labor für Digitaltechnik und Digitale Signalverarbeitung ("DSV-Labor")


Labor für Telekommunikationstechnik

TKT-Labor – Beispiele für Inhalte der Übungen

Funkübertragung basierend auf Software Defined Radio

Glasfaserübertragung mit maximalem Datenrate-Reichweite Produkt

Weitere Infos Bereich Kommunikationstechnik

Weitere detaillierte Informationen im Netz

...auf der Studiengangs-Homepage Kommunikationstechnik https://studiengang.beuth-hochschule.de/elektrotechnik/kt/

...auf der allgemeinen Elektrotechnik-Homepage unter www.beuth-hochschule.de/b-el-y/

Studiengangsfachberater

Prof.-Dr.-Ing. Matthias Seimetz, Raum B227, Sprechstunde Fr. 14-16 Uhr seimetz@beuth-hochschule.de